
RUNNING TIME ANALYSIS

Problem Solving with Computers-I

https://ucsb-cs24-sp17.github.io/

Performance questions

2

• How efficient is a piece of code?

• CPU time usage (Running time complexity)

• Memory usage

• Disk usage

• Network usage

Which implementation is faster?

function F(n){

if(n == 1) return 1

if(n == 2) return 1

return F(n-1) + F(n-2)

}

A. Recursive algorithm

function F(n){

Create an array fib[1..n]

fib[1] = 1

fib[2] = 1

for i = 3 to n:

fib[i] = fib[i-1] + fib[i-2]

return fib[n]

}

B. Iterative algorithm

C. Both are equally fast

What we really care about is how the running time scales as

a function of input size

function F(n){

if(n == 1) return 1

if(n == 2) return 1

return F(n-1) + F(n-2)

}

function F(n){

Create an array fib[1..n]

fib[1] = 1

fib[2] = 1

for i = 3 to n:

fib[i] = fib[i-1] + fib[i-2]

return fib[n]

}

The “right” question is: How does the running time scale?

E.g. How long does it take to compute F(200)?

….let’s say on….

Ack: Prof. Sanjoy Das Gupta

NEC Earth Simulator

Can perform up to 40 trillion operations per second.
Ack: Prof. Sanjoy Das Gupta

The running time of the recursive implementation

The Earth simulator needs 295 seconds for F200.

Time in seconds Interpretation

210 17 minutes

220 12 days

230 32 years

240 cave paintings

270 The big bang!

function F(n){

if(n == 1) return 1

if(n == 2) return 1

return F(n-1) + F(n-2)

}

Ack: Prof. Sanjoy Das Gupta

What is the fundamental difference between the two

function F(n){

if(n == 1) return 1

if(n == 2) return 1

return F(n-1) + F(n-2)

}

function F(n){

Create an array fib[1..n]

fib[1] = 1

fib[2] = 1

for i = 3 to n:

fib[i] = fib[i-1] + fib[i-2]

return fib[n]

}

function F(n){

if(n == 1) return 1

if(n == 2) return 1

return F(n-1) + F(n-2)

}

Algorithm Analysis

• Focus on primitive operations:

• Data movement (assignment)

• Control statements (branch,

function call, return)

• Arithmetic and logical operation

• By inspecting the pseudo-code, we

can count the number of primitive

operations executed by an algorithm

function F(n){

if(n == 1) return 1

if(n == 2) return 1

return F(n-1) + F(n-2)

}

Post mortem on the recursive function
What takes so long? Let’s unravel the recursion…

F(n)

F(n-1) F(n-2)

F(n-2)

F(n-3)

F(n-4)F(n-3)

F(n-4)

F(n-3)

F(n-4) F(n-5) F(n-4) F(n-5) F(n-5) F(n-6)

The same subproblems get solved over and over again!

Ack: Prof. Sanjoy Das Gupta

How bad is exponential time?

Need 20.694n operations to compute Fn.

Eg. Computing F200 needs about 2140 operations.

How long does this take on a fast computer?

40 trillion operations per second on NEC supercomputer -> 295 seconds

Running time analysis of the iterative algorithm

function F(n)

Create an array fib[1..n]

fib[1] = 1

fib[2] = 1

for i = 3 to n:

fib[i] = fib[i-1] + fib[i-2]

return fib[n]

The number of operations is proportional to n.

[Previous method: 20.7n]

F200 is now reasonable to compute, as are F2000 and F20000.

We just did an asymptotic analysis of the two algorithms

Asymptotic Analysis

• Goal: to simplify the analysis of running time by ignoring “details” which may

be an artifact of the underlying implementation:

• E.g., 1000001 ≈ 1000000

• Similarly, 3n2 ≈ n2

• Capture the essence: how the running time of an algorithm increases with the

size of the input in the limit (for large input sizes)

How do you do the analysis:

• Count the number of primitive operations executed as a function of input size.

• Express the count using O-notation to express

What is big-Oh about?

• Intuition: avoid details when they don’t matter, and they don’t matter when

input size (N) is big enough

• For polynomials, use only leading term, ignore coefficients: linear, quadratic

y = 3x y = 6x-2 y = 15x + 44

y = x2 y = x2-6x+9 y = 3x2+4x

• Compare algorithms in the limit

• 20N hours v. N2 microseconds:

• which is better?

Big-O: More formal definition

• The big-oh Notation:

• Asymptotic upper bound

• Formally:

• A function g(N) is O(f(N)) if there exist

constants c and n such that g(N) < cf(N) for

all N > n

• f(n) and g(n) are functions over non-negative

integers

• O-notation is an upper-bound, this means
that N is O(N), but it is also O(N2); we try

to provide tight bounds.

• Used for worst case analysis

cf(N)

g(N)

x = n

Writing Big O

• Simple Rule: Ignore lower order terms and constant

factors:

• 50n log n is O(n log n)

• 7n – 3 is O(n)

• 8n2 log n + 5 n2 + n + 1000 is O(n2 log n)

• Note: even though 50 n log n is O(n5), it is expected that

such approximation be as tight as possible (tight upper

bound).

Comparing asymptotic running times

N O(log N) O(N) O(N log N) O(N2)

10 0.000003 0.00001 0.000033 0.0001

100 0.000007 0.00010 0.000664 0.1000

1,000 0.000010 0.00100 0.010000 1.0

10,000 0.000013 0.01000 0.132900 1.7 min

100,000 0.000017 0.10000 1.661000 2.78 hr

1,000,000 0.000020 1.0 19.9 11.6 day

1,000,000,000 0.000030 16.7 min 18.3 hr 318

centuries

An algorithm that runs in O(n) is better than one that runs in O(n2) time

Similarly, O(log n) is better than O(n)

Hierarchy of functions: log n < n < n2 < n3 < 2n
106 instructions/sec, runtimes

Next time

• More linked list with classes

