RUNNING TIME ANALYSIS

Problem Solving with Computers-I
https://ucsb-cs24-sp17.github.io/
include <iostre stdi
using
mann) 1 faceboo

cout<<" 0 ;

GitHub

Performance questions

- How efficient is a piece of code?
- CPU time usage (Running time complexity)
- Memory usage
- Disk usage
- Network usage

Which implementation is faster?

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

```
function \(F(n)\) \{
    Create an array fib [1..n]
    fib [1] = 1
    fib [2] = 1
    for \(i=3\) to \(n\) :
        fib [i] = fib [i-1] + fib [i-2]
    return fib [n]
\}
B. terative algorithm
```

C. Both are equally fast

What we really care about is how the running time scales as a function of input size

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

```
function F(n) {
    Create an array fib[1..n]
    fib[1] = 1
    fib[2] = 1
    for i = 3 to n:
        fib[i] = fib[i-1] + fib[i-2]
    return fib[n]
}
```

The "right" question is: How does the running time scale?
E.g. How long does it take to compute $F(200)$?
....let's say on....

NEC Earth Simulator

Can perform up to 40 trillion operations per second.

The running time of the recursive implementation

The Earth simulator needs 2^{95} seconds for F_{200}.
Time in seconds
2^{10}
2^{20}
2^{30}
2^{40}
2^{70}

Interpretation
17 minutes
12 days
32 years
cave paintings
The big bang!
function $F(n)\{$
if(n == 1) return 1
if($n==2$) return 1 return $F(n-1)+F(n-2)$ \}
2^{40}

What is the fundamental difference between the two

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

```
function F(n) {
    Create an array fib[1..n]
    fib[1] = 1
    fib[2] = 1
    for i = 3 to n:
        fib[i] = fib[i-1] + fib[i-2]
    return fib[n]
}
```


Algorithm Analysis

- Focus on primitive operations:
- Data movement (assignment)
- Control statements (branch, function call, return)
- Arithmetic and logical operation
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

Post mortem on the recursive function
What takes so long? Let's unravel the recursion...

The same subproblems get solved over and over again!

How bad is exponential time?

Need $2^{0.694 n}$ operations to compute F_{n}.
Eg. Computing F_{200} needs about 2^{140} operations.
How long does this take on a fast computer?
40 trillion operations per second on NEC supercomputer -> 2^{95} seconds

Running time analysis of the iterative algorithm

function $F(n)$ Create an array fib[1..n] n primitive fib[1] = 1 \} fib[2] = 1 2 operations $\begin{aligned} & i=3 \text { to } n: \\ & \text { fib[i] }=\mathrm{fib}[i-1]+\text { fib[i-2] } \\ & \text { irn fib[n] } \end{aligned}$ for $i=3$ to n : return fib[n] The number foperations is proportional to n. $n+2+(n-3) c_{2}$ [Previous method: $2^{0.7 n}$] F_{200} is now reasonable to compute, as are F_{2000} and F_{20000}.

F_{200} is now reasonable to compute, as are F_{2000} and F_{20000}.

We just did an asymptotic analysis of the two algorithms

Asymptotic Analysis

- Goal: to simplify the analysis of running time by ignoring "details" which may be an artifact of the underlying implementation:
- E.g., $1000001 \approx 1000000$
- Similarly, $3 n^{2} \approx n^{2}$
- Capture the essence: how the running time of an algorithm increases with the size of the input in the limit (for large input sizes)
How do you do the analysis:
- Count the number of primitive operations executed as a function of input size.
- Express the count using O-notation to express

What is big-Oh about?

- Intuition: avoid details when they don't matter, and they don't matter when input size (N) is big enough
- For polynomials, use only leading term, ignore coefficients: linear, quadratic

$$
\begin{array}{llll}
y=3 x & y=6 x-2 & y=15 x+44 & O(x) \\
\hline y=x^{2} & y=x^{2}-6 x+9 & y=3 x^{2}+4 x & O\left(x^{2}\right)
\end{array}
$$

- Compare algorithms in the limit
- 20N hours v. N^{2} microseconds:
- which is better? AS N

Big-O: More formal definition

- The big-oh Notation:
- Asymptotic upper bound
- Formally:
- A function $g(N)$ is $O(f(N))$ if there exist constants c and n such that $g(N)<c f(N)$ for all $\mathrm{N}>\mathrm{n}$
- $f(n)$ and $g(n)$ are functions over non-negative integers

- O-notation is an upper-bound, this means that N is $\mathrm{O}(\mathrm{N})$, but it is also $O\left(\mathrm{~N}^{2}\right)$; we try to provide tight bounds.
- Used for worst case analysis

Writing Big O

- Simple Rule: Ignore lower order terms and constant factors:
- $50 \mathrm{n} \log \mathrm{n}$ is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
$\cdot 7 n-3$ is $O(n)$
$\cdot 8 n^{2} \log n+5 n^{2}+n+1000$ is $O\left(n^{2} \log n\right)$
- Note: even though $50 \mathrm{n} \log \mathrm{n}$ is $\mathrm{O}\left(\mathrm{n}^{5}\right)$, it is expected that such approximation be as tight as possible (tight upper bound).

Comparing asymptotic running times

N	$O(\log N)$	$O(N)$	$O(N \log N)$	$O\left(N^{2}\right)$
10	0.000003	0.00001	0.000033	0.0001
100	0.000007	0.00010	0.000664	0.1000
1,000	0.000010	0.00100	0.010000	1.0
10,000	0.000013	0.01000	0.132900	1.7 min
100,000	0.000017	0.10000	1.661000	2.78 hr
$1,000,000$	0.000020	1.0	19.9	11.6 day
$1,000,000,000$	0.000030	16.7 min	18.3 hr	318 centuries

An algorithm that runs in $O(n)$ is better than one that runs in $O\left(n^{2}\right)$ time Similarly, $\mathrm{O}(\log \mathrm{n})$ is better than $\mathrm{O}(\mathrm{n})$
Hierarchy of functions: $\log \mathrm{n}<\mathrm{n}<\mathrm{n}^{2}<\mathrm{n}^{3}<2^{\mathrm{n}}$

Next time

- More linked list with classes

