RUNNING TIME ANALY SIS

Problem Solving with Computers-I C+
GitHub
https://ucsb-cs24-spl7.github.io/ ‘\j:f:q s
sol) "\9‘{}._. L

Performance questions

- How efficient is a piece of code?
- CPU time usage (Running time complexity)
- Memory usage
- Disk usage
- Network usage

Which implementation is faster?

function F(n) {

function F(n) { Create an array fib[l..n]

if(n == 1) return 1 £ib[1] = 1
if(n == 2) return 1 £ib[2] = 1
return F(n-1) + F(n-2) for i = 3 to n:
} fib[i] = £ib[i-1] + £fib[i-2]

return fib[n]

}

A. Recursive algorithm B. Iterative algorithm

C. Both are equally fast

What we really care about is how the running time scales as
a function of input size

function F(n) {

function F(n) { Create an array fib[1l..n]

if(n == 1) return 1 £ib[1] = 1
if(n == 2) return 1 £ib[2] = 1
return F(n-1) + F(n-2) for i = 3 to n:
} fib[i] = £fib[i-1] + fib[i-2]

return fib[n]

}

The “right” question is: How does the running time scale?
E.g. How long does it take to compute F(200)?
....let's say on....

Ack: Prof. Sanjoy Das Gupta

NEC Earth Simulator

The Earth Simulator eenter

Can perform up to 40 trillion operations per second.
Ack: Prof. Sanjoy Das Gupta

L
The running time of the recursive implementation

The Earth simulator needs 2° seconds for F,,,.

Time In seconds Interpretation function F(n) {
210 17 minutes i1f(n == 1) return 1
20 if(n == 2) return 1
2 12 days return F(n-1) + F(n-2)
230 32 years }
240 cave paintings
270 The big bang!

Ack: Prof. Sanjoy Das Gupta

What Is the fundamental difference between the two

function F(n) {

function F(n) { Create an array fib[1l..n]

if(n = 1) return 1 £ib[1] = 1
if(n = 2) return 1 £ib[2] = 1
return F(n-1) + F(n-2) for i = 3 to n:
} fib[i] = fib[i-1] + fib[i-2]

return fib[n]

Algorithm Analysis
o _ function F(n) {
- Focus on primitive operations: if(n == 1) return 1
- Data movement (assignment) if(n == 2) return 1

return F(n-1) + F(n-2)

- Control statements (branch, }

function call, return)
- Arithmetic and logical operation

- By inspecting the pseudo-code, we
can count the number of primitive
operations executed by an algorithm

Post mortem on the recursive function

What takes so long? Let's unravel the recursion...

F(n)
F(n-1) F(n-2)
F(n-2) F(n-3) F(n-3) F(n-4)

/N /N NN

F(n-3) F(n-4) F(n-4) F(n-5) F(n-4) F(n-5) F(n-5) F(n-6)

The same subproblems get solved over and over again!
Ack: Prof. Sanjoy Das Gupta

How bad Is exponential time?

Need 296941 gperations to compute F,..

2140

Eg. Computing F,,, needs about operations.

How long does this take on a fast computer?
40 trillion operations per second on NEC supercomputer -> 2% seconds

Running time analysis of the iterative algorithm

function F(n)
Create an array fib[1l. .n]
fib[1]
fib[2]
for i = 3 to n:

fib[i] = f£fib[i-1] + £fib[i-2]
return fib[n]

1
1

The number of operations is proportional to n.
[Previous method: 2°-7"]

F.q0 IS NOW reasonable to compute, as are F,y5, and F,p000-

We just did an asymptotic analysis of the two algorithms

L
Asymptotic Analysis

- Goal: to simplify the analysis of running time by ignoring “details” which may
be an artifact of the underlying implementation:
- E.g., 1000001 = 1000000
- Similarly, 3n?=n?

- Capture the essence: how the running time of an algorithm increases with the
size of the input in the limit (for large input sizes)

How do you do the analysis:
- Count the number of primitive operations executed as a function of input size.
- Express the count using O-notation to express

L
What Is big-Oh about?

- Intuition: avoid details when they don’t matter, and they don’t matter when
Input size (N) is big enough
- For polynomials, use only leading term, ignore coefficients: linear, quadratic

y = 3X y = bx—2 y = 1bx + 44
y = x? v = x2-6x+9 vy = 3x%+4x

- Compare algorithms in the limit
- 20N hours v. N2 microseconds:
- which is better?

Big-O: More formal definition

- The big-oh Notation:
- Asymptotic upper bound

- Formally:

- Afunction g (N) IS O (£ (N)) if there exist
constants c and n such that g (N) < cf (N) for
allN > n

- f(n) and g(n) are functions over non-negative
integers

- O-notation is an upper-bound, this means
that N is O (N), but it is also O (N?) ; we try

to provide tight bounds.
- Used for worst case analysis

cf(N)

L
Writing Big O

- Simple Rule: Ignore lower order terms and constant
factors:

-50n log nis O(n log n)
-/n—31s O(n)
-8n%logn +5n2+n+ 1000 is O(n? log n)
- Note: even though 50 n log n is O(n®), it is expected that

such approximation be as tight as possible (tight upper
bound).

L
Comparing asymptotic running times

N O(log N) O(N) | O(N logN) O(N?)
10/ 0.000003 | 0.00001 0.000033 0.0001
100 | 0.000007 | 0.00010 0.000664 0.1000
1,000 | 0.000010 | 0.00100 0.010000 1.0
10,000 | 0.000013 [0.01000 0.132900 1.7 min
100,000 | 0.000017 | 0.10000 1.661000 2.78 hr
1,000,000 | 0.000020 |1.0 19.9 11.6 day
1,000,000,000 { 0.000030 |{16.7 min |18.3 hr 318
centuries

An algorithm that runs in O(n) is better than one that runs in O(n?) time
Similarly, O(log n) is better than O(n)

H H . 2 3 . . .

Next time

- More linked list with classes

