
CONTAINER CLASSES
Problem Solving with Computers-II

https://ucsb-cs24-sp17.github.io/

Read the syllabus. Know what’s required. Know how to get help.

CLICKERS OUT – FREQUENCY AB

 A container class is a data type that is capable of holding a
collection of items.

 In C++, container classes can be implemented as a class,

along with member functions to add, remove, and examine

items.

Container Classes

Bags

• For the first example,
think about a bag.

Bags

• For the first example,
think about a bag.

• Inside the bag are

some numbers.

Initial State of a Bag

• When you first begin
to use a bag, the
bag will be empty.

• We count on this to

be the initial state

of any bag that we

use.

THIS BAG

IS

EMPTY.

What questions should we

ask to define the bag

container class?

Defining the bag container class

• What questions should we ask to
help define the bag container
class?

• What can a user do with a bag of
numbers

Inserting Numbers into a Bag

• Numbers may be
inserted into a bag.

I AM

PUTTING THE

NUMBER 4

INTO THE

BAG.

Inserting Numbers into a Bag

• Numbers may be
inserted into a bag.

THE 4 IS

IN THE

BAG.

Inserting Numbers into a Bag

• Numbers may be
inserted into a bag.

• The bag can hold

many numbers.

NOW I'M

PUTTING

ANOTHER

NUMBER IN

THE BAG --

AN 8.

Inserting Numbers into a Bag

• Numbers may be
inserted into a bag.

• The bag can hold

many numbers.

THE 8 IS

ALSO IN

THE BAG.

Inserting Numbers into a Bag

• Numbers may be
inserted into a bag.

• The bag can hold

many numbers.

• We can even insert

the same number

more than once. NOW I'M

PUTTING A

SECOND 4

IN THE

BAG.

Inserting Numbers into a Bag

• Numbers may be
inserted into a
bag.

• The bag can hold

many numbers.

• We can even

insert the same

number more than

once.

NOW THE

BAG HAS

TWO 4'S

AND AN 8..

Examining a Bag

• We may ask about the
contents of the bag.

HAVE

YOU GOT

ANY 4's

?

YES,

I HAVE

TWO OF

THEM.

Removing a Number from a Bag

• We may remove a
number from a bag.

THIS

4 IS

OUTTA

HERE!

Removing a Number from a Bag

• We may remove a
number from a
bag.

• But we remove

only one number

at a time.

ONE 4 IS

GONE, BUT

THE OTHER

4 REMAINS.

Which operations were defined so far on a “bag”

A. Insert (possibly multiple instances of the same number)

B. Count the number of occurrences of a number

C. Remove a single occurrence of a number

D. Some of the above

E. All of the above

One more operation: Count how many numbers
are in the bag in total

• Another operation is
to determine how
many numbers are in
a bag.

IN MY OPINION,
THERE ARE

TOO MANY

NUMBERS.

Summary of the Bag Operations

• A bag can be put in its initial state, which is an
empty bag.

• Numbers can be inserted into the bag.

• You may check how many occurrences of a

certain number are in the bag.

• Numbers can be removed from the bag.

• You can check how many numbers are in the bag.

Activity 1: Write the definition of the class

• With your peer group write the definition of the bag class

• Hints:

1. What are the private data members?

2. What are the methods?

Operations defined so far -

• Create an initial state, which is an empty bag.

• Insert a number

• Count occurrences of a certain number

• Remove a number from the bag.

• Count how many numbers are in the bag.

Demo

• Definition of the simple bag class: simple_bag.cpp

• Understand the use of static member variables by considering other options

Key take away: We used a static array to store the
elements of a bag, why?

class bag

{

public:

...

private:

int data[20];

unsigned int count;

};

This limits the

maximum number

of elements!

We used a static const member variable for the
capacity, why?

class bag

{

public:

static const unsigned int CAPACITY = 20;

...

private:

int data[CAPACITY];

unsigned int count;

};

Don’t forget to define

CAPACITY in the

implementation file!

bag b1, b2, b3;
How many copies of CAPACITY are created in
memory by the above C++ statement?

class bag

{

public:

static const unsigned int CAPACITY = 20;

...

private:

int data[CAPACITY];

size_t count;

};

A. Zero

B. One

C. Two

D. Three

E. Depends

Implementation Details

• The entries of a bag
will be stored in the
front part of an array,
as shown in this
example.

[0] [1] [2] [3] [4] [5] . . .

An array of integers

4 8 4

We don't care what's in

this part of the array.

Implementation Details

• The entries may
appear in any order.
This represents the
same bag as the
previous one. . .

An array of integers

4 4 8

We don't care what's in

this part of the array.

[0] [1] [2] [3] [4] [5] . . .

Implementation Details

• . . . and this also
represents the same
bag.

An array of integers
We don't care what's in

this part of the array.

[0] [1] [2] [3] [4] [5] . . .

8 4 4

Implementation Details

• We also need to keep track of how
many numbers are in the bag.

An array of integers

8 4 4

We don't care what's in

this part of the array.

An integer to keep

track of the bag's size
3

[0] [1] [2] [3] [4] [5] . . .

Note: This is a key difference between the bag class and the sequence class (PA02) is

that the for the sequence class, the order of elements is maintained after each deletion

An Example of Calling Insert

void bag::insert(int new_entry)

Before calling insert, we

might have this bag b:

2

[0] [1] [2] . . .

8 4
b.data

b.count

An Example of Calling Insert

void bag::insert(int new_entry)

b.data

b.count

We make a function call

b.insert(17)

What values will be in

b.data and b.count

after the member

function finishes ?

2

[0] [1] [2] . . .

8 4

void bag::insert(int new_entry)

b.insert(17);

An Example of Calling Insert

void bag::insert(int new_entry)

After calling b.insert(17),

we will have this bag b:

3

[0] [1] [2] . . .

8 4 17

void bag::insert(int new_entry)

b.data

b.count
2

[0] [1] [2] . . .

8 4

Pseudocode for bag::insert

 assert(size() < CAPACITY);

 Place new_entry in the appropriate location of the

data array.

 Add one to the member variable count.

What is the “appropriate

location” of the data array ?

Pseudocode for bag::insert

 assert(size() < CAPACITY);

 Place new_entry in the appropriate location of the

data array.

 Add one to the member variable count.

data[count] = new_entry;

count++;

Pseudocode for bag::insert

 assert(size() < CAPACITY);

 Place new_entry in the appropriate location of the

data array.

 Add one to the member variable count.

data[count++] = new_entry;

Demo: Implementation of bag

• Definition of the simple bag class: simple_bag.cpp

• Implement the insert, erase_one and count methods

• Test with simple_bag_test.cpp

• Use the bag class to store the ages of members of a family, find each age and

delete them (bag_demo.cxx)

• Consider the changes you have to make to the current code if we were to

store a bag of elements of a different datatype.

• Compare with the other implementation (bag1.cxx) that uses a “flexible” data

type for the elements of the bag.

What’s new? class bag

{

public:

typedef int value_type;

typedef std::size_t size_type;

static const size_type CAPACITY = 30;

bag();

bool erase_one(const value_type& target);

void insert(const value_type& entry);

size_type size() const { return used; }

size_type count(const value_type& target) const;

private:

value_type data[CAPACITY];

size_type used;

};

Other types of bags

• In the simple_bag.cpp example, we implemented a bag containing
integers.

• The implementation in bag1.cxx allowed us to easily create a bag of

float numbers, a bag of characters, a bag of strings . . .

• What was the key technique that allowed us to create a more

flexible implementation?

Demo expected behaviour of pa02

 A container class is a class that can hold a collection of
items.

 Container classes can be implemented with a C++
class.

 The class is implemented with a header file (containing
documentation and the class definition) and an
implementation file (containing the implementations of
the member functions).

 Other details are given in Section 3.1, which you
should read.

Summary

Next time

• Chapter 4: Pointers and dynamic arrays

