CONTAINER CLASSES

Problem Solving with Computers-I| C++

https://ucsb-cs24-spl7.github.io/ ‘ff::namespace .

Read the syllabus. Know what’s required. Know how to get help.

CLICKERS OUT — FREQUENCY AB

Container Classes

O Acontainer class Is a data type that is capable of holding a
collection of items.

O In C++, container classes can be implemented as a class,
along with member functions to add, remove, and examine
items.

L
Bags

- For the first example,
think about a bag.

Bags

For the first example,
think about a bag.

Inside the bag are
some numbers.

Initial State of a Bag

- When you first begin

to use a bag, the
bag will be empty.

- We count on this to

be the initial state

of any bag that we
use.

What questions should we
ask to define the bag
container class?

—

—

THIS BAG
1S
EMPTY.

(b

Defining the bag container class

- What questions should we ask to

help define the bag container
class?

- What can a user do with a bag of
numbers

Inserting Numbers into a Bag

- Numbers may be
Inserted into a bag.

| AM

PUTTING THE
NUMBER 4
INTO THE

BAG.
_ J

Inserting Numbers into a Bag

- Numbers may be

Inserted into a bag. }')

— 7

THE 4 1S
IN THE
BAG.

Inserting Numbers into a Bag

- Numbers may be
Inserted into a bag.

- The bag can hold

many numbers.

_

NOW I'M
PUTTING
ANOTHER
NUMBER IN
THE BAG --
AN 8.

J

Inserting Numbers into a Bag

- Numbers may be
Inserted into a bag.

- The bag can hold ‘
many numbers. ;@

THE 8 IS
ALSO IN
THE BAG.

Inserting Numbers into a Bag

- Numbers may be
Inserted into a bag.

- The bag can hold
many numbers.

- We can even Insert
the same number
more than once.

PUTTING A
SECOND 4
IN THE
BAG.

Inserting Numbers into a Bag

- Numbers may be
Inserted Into a
bag.

- The bag can hold
many numbers.

- We can even
Insert the same
number more than
once.

NOW THE
BAG HAS
TWO 4'S

AND AN 8..

_

Examining a Bag

- We may ask about the
contents of the bag.

YES,

| HAVE
TWO OF
THEM,

()

HAVE
YOU GOT

ANY 4's
?

Removing a Number from a Bag

- We may remove a
number from a bag.

THIS
4 1S
OUTTA
HERE!

Removing a Number from a Bag

- We may remove a
number from a
bag. | ONE4 IS |

GONE, BUT

- But we remove I TR
only one number
at a time.

7l 4 REMAINS.

e

Which operations were defined so far on a “bag”

Insert (possibly multiple instances of the same number)
Count the number of occurrences of a number
Remove a single occurrence of a number

Some of the above

All of the above

mo o w»

One more operation: Count how many numbers

are in the bag in total

- Another operation is
to determine how
many numbers are In
a bag.

—

2

~

IN MY OPINION,
THERE ARE
TOO MANY
NUMBERS.

Summary of the Bag Operations

- A bag can be put in its initial state, which is an
empty bag.

- Numbers can be inserted into the bag.

- You may check how many occurrences of a
certain number are in the bag.

- Numbers can be removed from the bag.
- You can check how many numbers are in the bag.

L
Activity 1: Write the definition of the class

Operations defined so far -

- Create an initial state, which is an empty bag.
- Insert a number

- Count occurrences of a certain number

- Remove a number from the bag.

- Count how many numbers are in the bag.

- With your peer group write the definition of the bag class
- Hints:

1. What are the private data members?

2. What are the methods?

Demo

- Definition of the simple bag class: simple_bag.cpp
- Understand the use of static member variables by considering other options

Key take away: We used a static array to store the
elements of a bag, why?

class bag

{ o

public: This limits the
maximum number

private: of elements!

Int data[20];
unsigned int count;

}

We used a static const member variable for the
capacity, why?

class bag

éublic: Don’t forget to define
static const unsigned int CAPACITY = 20; CAPACITY In the
Implementation file!

private:

Int data|] CAPACITY];
unsigned int count;

}

bag bl, b2, b3;
How many copies of CAPACITY are created In
memory by the above C++ statement?

class bag A. Zero
t B. One
public:
static const unsigned int CAPACITY = 20; C. Two
D. Three
private:
int data[CAPACITY]; . Depends
Size_t count;
}

Implementation Detalls

- The entries of a bag
will be stored Iin the

front part of an array,
as shown in this

example.
[0]

[1]

[2]

[3] [4] [5]

A

8

A

V./

Implementation Detalls

- The entries may
appear in any order.
This represents the
same bag as the
previous one. . .

(0] 1] [2] [3] [4] [5]
Slele] 1

Implementation Detalls

.. ..and this also
represents the same
bag.

(0] 1] [2] [3] [4] [5]
8 4 4

\—v_./

L
Implementation Detalls

- We also need to keep track of how
many numbers are in the bag.

3

(0] 1] [2] [3] [4] [5]
8 4 4

V./

Note: This is a key difference between the bag class and the sequence class (PA02) is
that the for the sequence class, the order of elements is maintained after each deletion

L
An Example of Calling Insert

void bag::insert(int new_entry)

Before calling insert, we
might have this bag b:

L
An Example of Calling Insert

void bag::insert(int new_entry)

b.insert(17);

What values will be in
b.data and b.count

8 4 after the member
function finishes ?

L
An Example of Calling Insert

void bag::insert(int new_entry)

Pseudocode for bag::insert

= assert(size() < CAPACITY);

3¢ Place new_entry in the appropriate location of the
data array.

s4 Add one to the member variable count.

What is the “appropriate
location” of the data array ?

Pseudocode for bag::insert

= assert(size() < CAPACITY);

3¢ Place new_entry in the appropriate location of the
data array.
s4 Add one to the member variable count.

data[count] =new_entry;
count++;

Pseudocode for bag::insert

= assert(size() < CAPACITY);

3¢ Place new_entry in the appropriate location of the
data array.
s4 Add one to the member variable count.

data] count++] =new_entry;

Demo: Implementation of bag

- Definition of the simple bag class: simple_bag.cpp
- Implement the insert, erase_one and count methods
- Test with simple_bag_test.cpp

- Use the bag class to store the ages of members of a family, find each age and
delete them (bag_demo.cxx)

- Consider the changes you have to make to the current code if we were to
store a bag of elements of a different datatype.

- Compare with the other implementation (bag1.cxx) that uses a “flexible” data
type for the elements of the bag.

What's new? class bag

{
public:

typedef int value type;

typedef std::size t size type;

static const size_type CAPACITY = 30;
bag();

bool erase one(const value_type& target);
void insert(const value typeé& entry),
size_type size() const { return used; }

size_type count(const value_typeé& target) const;
private:

value type data|[CAPACITY];
Size_type used,

¥

Other types of bags

- In the simple_bag.cpp example, we implemented a bag containing

Integers.
- The implementation in bagl.cxx allowed us to easily create a bag of
float numbers, a bag of characters, a bag of strings . . .

- What was the key technique that allowed us to create a more
flexible implementation?

Demo expected behaviour of pa02

i kb
Summary

O A container class Is a class that can hold a collection of
items.

O Container classes can be implemented with a C++
class.

O The class is Implemented with a header file (containing
documentation and the class definition) and an
Implementation file (containing the implementations of
the member functions).

O Other details are given in Section 3.1, which you
should read.

Next time

- Chapter 4: Pointers and dynamic arrays

