
DEFAULT PARAMETERS,

OPERATOR OVERLOADING

FRIEND FUNCTIONS
Problem Solving with Computers-II

https://ucsb-cs24-sp17.github.io/

Read the syllabus. Know what’s required. Know how to get help.

CLICKERS OUT – FREQUENCY AB

Review: Constructor

Which constructor is called when the following statement is executed?

thinking_cap student;

class thinking_cap

{

public:

thinking_cap(); //A

thinking_cap(char new_green[], char new_red[]); //B

void slots(char new_green[], char new_red[]);

void push_green() const;

void push_red() const;

private:

char green_string[50];

char red_string[50];

};

//C: Default copy constructor

//D: Default assignment operator

//E: None of the above

Default values

int sum(int a=10, int b=20){

return a+b;

}

int main(){

int x= 40, y=50;

cout<<sum(x,y)<<endl;

cout<<sum(x)<<endl;

cout<<sum()<<endl;

}

Specify default constructor using default arguments

Which constructor is called when the following statement is executed?

thinking_cap student;

class thinking_cap

{

public:

thinking_cap(char new_green[]=“Hello”, char new_red[]=“there”); //A

void slots(char new_green[], char new_red[]);

void push_green() const;

void push_red() const;

private:

char green_string[50];

char red_string[50];

};

//B: Default copy constructor

//C: Default assignment operator

//D: None of the above

The point class (Chapter 2, section 2.4)

point: (x,y) shift(delx, dely) rotate90()

Let’s look at the implementation of the point class

Passing point objects as parameters

double distance(point p1, point p2);

//Precondition: p1 and p2 are point objects that have been initialized

//Post condition: returns the Euclidean distance between the two points

Would you implement the above function as a member function or a non-

member function? Write your reason and discuss with your peer group.

A. Member function

B. Non-member function

C. Neither

Passing point objects as parameters

double distance(point p1, point p2);

//Precondition: p1 and p2 are point objects that have been initialized

//Post condition: returns the Euclidean distance between the two points

Which of the following is invoked when the distance function is called on s1 and s2
(line 2):

point s1(1,1), s2; //line 1
cout<<distance(s1, s2); //line 2

A. Default constructor

B. Default assignment operator

C. Default copy constructor

References in C++
int main() {

int d = 5;

int &e = d;

}

Which diagram below represents the result of the above code?

5d:
A. B.

C. D. This code causes an error

5e:

5
d:
e:

5d:

e:

8

References in C++
int main() {

int d = 5;

int &e = d;

int f = 10;

e = f;

}

How does the diagram change with this code?

C. 10
d:
e:

10
d:
e:

10f:

f:

A. B.
5d:

10
e:

D. Other or error

f:

9

Passing references as parameters

double distance(point &p1, point &p2);

//Precondition: p1 and p2 are point objects that have been initialized

//Post condition: returns the Euclidean distance between the two points

point s1(1,1), s2;

cout<<distance(s1, s2);

What is the benefit of passing references as parameters?

What are potential dangers?

Operator overloading

double distance(const point & p1, const point &p2){

if(p1 == p2)

return 0;

}

We would like to be able to compare two objects of the class using the
following operators

==

!=

and possibly others

Printing point objects to output stream

• Wouldn’t it be convenient if we could do this:

point p(10, 10);

cout<<p;

And this….

point p;

cin>>p; //sets the x and y member variables of p based on user input

 Classes have member variables and member functions (method).
An object is a variable where the data type is a class.

 You should know how to declare a new class type, how to

implement its member functions, how to use the class type.

 Frequently, the member functions of an class type place information

in the member variables, or use information that's already in the

member variables.

 New functionality may be added using non-member functions, friend

functions, and operator overloading

Summary

Next time

• Wrap up chapter 2, gdb

