C++ CODE DESIGN
INTRO TO ABSTRACT DATATYPES

Problem Solving with Computers-l (:++
usfﬂq “Ej‘:\‘e:\ - gace! ' s

https://ucsb-cs24-spl7.github.io/

y
Read the syllabus. Know what’s required. Know how to get help.

CLICKERS OUT — FREQUENCY AB

Intro to specification and design

O Chapter 1 introduces the software development cycle
O Key concepts: Specification, design, implementation
(What is your understanding of what each of these are — discuss)

Example
S)
- You are the head of a THE REQUIREMENTS
programming team and FORAFUNCTION THAT
you want one of your WRITE.

Z -

~
| DON'T CARE
WHAT METHOD THE

FUNCTION USES,
AS LONG AS THESE
REQUIREMENTS
ARE MET.

programmers to write a
function for part of a
project.

Procedural abstraction

Frequently a programmer must communicate precisely what a function
accomplishes, without any indication of how the function does its work.

Specifying function behavior

Specifying behaviour of a function with information hiding?

- The precondition statement indicates what must be true before the function
IS called.

- The postcondition statement indicates what will be true when the function
finishes its work.

L
Example

void write_sqrt(double x)

/[Precondition: x >= 0.
/[Postcondition: The square root of x has
/I been written to the standard output.

L
Example

void write_sqrt(double x)

/[Precondition: x >= 0.
/[Postcondition: The square root of x has
/I been written to the standard output.

-

- The precondition and
postcondition appear as
comments in your program.

L
Example

void write_sqrt(double x)

/[Precondition: x >= 0.
/[Postcondition: The square root of x has
/I been written to the standard output.

/
- In this example, the precondition

requires that
x >=0

be true whenever the function is called.

L
Example

Which of these function calls does not meet the
Precc_mdition ? R ” s fnpub
write sqrt(-10); L/
write sqrt(0);
write sqrt(5.6);

L
Example

void write_sqrt(double x)

/[Precondition: x >= 0.
/[Postcondition: The square root of x has
/I been written to the standard output.

- The postcondition always
Indicates what work the function
has accomplished. In this case,
when the function returns the
square root of x has been written.

Another Example

bool is_vowel(char letter)

/I Precondition: letter is an uppercase or

/I lowercase letter (in the range ‘A" ... 'Z'or'a' ... 'z") .
/I Postcondition: The value returned by the

/[function is true if Letter is a vowel,

/I otherwise the value returned by the function is

/I false.

L
Another Example

What values will be returned by these function calls ?

is vowel("A'); ot

is vowel(* Z'); 4wt or""de

Is_vowel('?"); L

\) ot M

L
Another Example

What values will be returned by these function calls ?

true

Is_ vowel('A'");
is_ vowel(" Z"); false
Is_vowel('?"); N

N

Nobody knows, because the
precondition has been violated.

Another Example

What values will be returned by
these function calls ?

Is_ vowel('A'");
Is_vowel(* Z');
Is_vowel("?")\

N

Violating the precondition
might even crash the entire program.

L
A Quiz

Suppose that you call a function, and you neglect to make sure that
the precondition is valid. Who is responsible if this inadvertently
causes a 40-day flood or other disaster?

‘You

B. The programmer who wrote that torrential function
C. Noah

Always make sure the precondition is valid . . .

- The programmer who calls the function is responsible
for ensuring that the precondition is valid when the
function is called.

AT THIS POINT, MY
PROGRAM CALLS YOUR
FUNCTION, AND | MAKE

SURE THAT THE

PRECONDITION IS

L VALID.

... SO the postcondition becomes true at the
function’s end.

()
THEN MY FUNCTION

. I WILL EXECUTE, AND WHEN
The programmer who writes the 15 DONE THE
function counts on the POSTCONDITION WILL BE

. . . TRUE.

precondition being valid, and | GUARANTEE IT
ensures that the L

postcondition becomes true
at the function’s end.

On the other hand, careful programmers also follow
these rules:

- Detect when a precondition has been violated.
- Print an error message and halt the program...
...rather than causing a disaster.

L
Which of the following statements would you use to

detect If a precondition has been violated?

void write_sqrt(double x)
/[Precondition: x >= 0.

) bk
Alon 06“\)
TTn A

//Program implementation

¥

ot S(M
o .

/I Postcondition: The square root of X has b
/[been written to the standard output. /

N h
{ A, if(x<0) return; /

assert(x >= 0);

7 C. 11(x<0) cerr<<'Input "<<x<<" s less than 0" | Y
D. Option B or C R Ty
E. Any of the above would work o

%—4

L
Example

void write_sqrt(double x)

/[Precondition: x >= 0.

/[Postcondition: The square root of x has
/I been written to the standard output.

{

assert(x >=0);

-~

The assert function

" (described in Section 1.1) is
useful for detecting violations
of a precondition.

Intro to Object Oriented Programming

O Chapter 2 introduces Object
Oriented Programming.

O OOP is an approach to programming
which supports the creation of new
Data Structures data types and operations to

and Other Objects manipulate those types.
Using C++

What Is this Object ?

- There is no real answer to the
question, but we’ll call it a “thinking
cap’.

- The plan is to describe a thinking
cap by telling you what actions
can be done to It.

Description of the thinking cap

- You may put a piece of paper in each of the two
slots (green and red), with a sentence written
on each.

- You may push the green button and the thinking
cap will speak the sentence from the green
slot’s paper.

- And same for the red button.

L
Example

That test was

a breeze !
_ A

Example

| should
study harder !

Thinking Cap Definition

- We can define the thinking cap

using a data type called a
class.

class thinking_cap

{

Components of the thinking cap

- The class will have two components class thinking_cap
called green_string and red_string.. { -

char green_string[50];

How Is a class different from a struct? char red_string[50];

Thinking Cap as an Abstract Data Type

2 The two components will be class thinking_cap
private member variables. {
This ensures that nobody can
directly access this private:
information. The only access char green_string[50];
is through functions that we char red_string[50];

provide for the class. };

Thinking Cap as an Abstract Data Type

- Public interface — can be accessed
by the user of the class

- List member function (methods) that
manipulate data here!

- Provide a clear interface to data!!

class thinking_cap

{
public:

private:
char green_string[50];
char red_string[50];

}

Thinking Cap Implementation

- List member function (methods)
that manipulate data — ONLY
declarations

class thinking_cap

{
public:

private:
char green_string[50];
char red_string[50];

%

Thinking Cap Implementation

class thinking_cap

{
public:

void slots(char new_green| |, char new_red]]);

void push_green() const; &

void push_red() const; ,oe6 &
private: & X

- : M &
char green_string[50]; & F
char red_string[50]; S \vq'
N

b &

Thinking Cap Implementation

class thinking_cap
{
public:
void slots(char new_green[], char -
void push_green() const;
void push_red() const;
private:
char green_string[50];
char red_string[50];

}

2d[]);

This Mmeans that thege
functiong will not change
the datq Stored in g
thinking_cap.

Files for the Thinking Cap

- The thinking_cap class definition,
which we have just seen, Is placed
with documentation in a file called

thinker.h, outlined here.

- The implementations of the ///
three member functions will be placed Class definition:
in a separate file called thinker.cxx, UIMIELEER A
which we will examine in a few have already seen

minutes. i

Using the Thinking Cap

- A program that wants to
use the thinking cap must
Include the thinker header
file (along with its other
header inclusions).

#include <iostream>
#include <cstdlib>
#include "'thinker.n"'

Using the Thinking Cap

#include <iostream.h>
#include <stdlib.h>
#include "'thinker.n"'

Int main()

{
thinking_cap student:

thinking_cap fan;

- How Is student different
from “thinking_cap™?

- What happens in memory
after this code Is executed?

Using the Thinking Cap

- Activating the student’s
slot method

#include <iostream.h>
#include <stdlib.h>
#include "'thinker.n"'

Int main()
{
thinking_cap student;
thinking_cap fan;
student.slots(""Hello™, ""Goodbye");

A Quiz

How would you activate
student's push_green member
function ?

(Write your answer)

(After that discuss with your
peer group)

class thinking _cap
{
public:
void slots(char new_green[], char new_red]]);
void push_green() const;
void push_red() const;
private:
char green_string[50];
char red_string[50];

};

Int main()
{
thinking_cap student;
thinking_cap fan;
student.slots(""Hello™, "Goodbye");

A Quiz

What would be the output of
student's push_green member
function at this pointin the
program ?

class thinking _cap
{
public:
void slots(char new_green[|, char new_red[]);
void push_green() const;
void push_red() const;
private:
char green_string[50];
char red_string[50];
1
Int main()
{
thinking_cap student;
thinking_cap fan;
student.slots("Hello", "Goodbye");
student.push_green();

A Quiz
Int main()

{

thinking_cap student;

thin

student.slots(""Hello", ""Goodbye"");
fan.slots(""Go Cougars!"', ""Boo!"");

Stuo
fan.
Stuo

King_cap fan;

ent.push_green();
oush_green();

ent.push_red();

Trace through this
program, and tell
me the complete
output.

What you know so far?

- Class = Data + Member Functions.
- Abstract Data Type = Class + information hiding

- You know how to define a new class type, and place the
definition in a header file.

- You know how to use the header file in a program which
declares instances of the class type.

- You know how to activate member functions.

zBut you still need to learn how to write the bodies of a class’s
methods.

Next time

- Implementing classes
- Constructors

