
C++ CODE DESIGN

INTRO TO ABSTRACT DATA TYPES
Problem Solving with Computers-II

https://ucsb-cs24-sp17.github.io/

Read the syllabus. Know what’s required. Know how to get help.

CLICKERS OUT – FREQUENCY AB

 Chapter 1 introduces the software development cycle

 Key concepts: Specification, design, implementation

(What is your understanding of what each of these are – discuss)

Intro to specification and design

Example

• You are the head of a
programming team and
you want one of your
programmers to write a
function for part of a
project.

HERE ARE

THE REQUIREMENTS

FOR A FUNCTION THAT I

WANT YOU TO

WRITE.

I DON'T CARE

WHAT METHOD THE

FUNCTION USES,

AS LONG AS THESE

REQUIREMENTS

ARE MET.

Procedural abstraction

Frequently a programmer must communicate precisely what a function
accomplishes, without any indication of how the function does its work.

Specifying function behavior

Specifying behaviour of a function with information hiding?

• The precondition statement indicates what must be true before the function

is called.

• The postcondition statement indicates what will be true when the function

finishes its work.

Example

void write_sqrt(double x)

// Precondition: x >= 0.

// Postcondition: The square root of x has

// been written to the standard output.

...

Example

void write_sqrt(double x)

// Precondition: x >= 0.

// Postcondition: The square root of x has

// been written to the standard output.

...
}

• The precondition and
postcondition appear as
comments in your program.

Example

void write_sqrt(double x)

// Precondition: x >= 0.

// Postcondition: The square root of x has

// been written to the standard output.

...
}

• In this example, the precondition
requires that

x >= 0

be true whenever the function is called.

Example

write_sqrt(-10);

write_sqrt(0);

write_sqrt(5.6);

Which of these function calls does not meet the
precondition ?

Example

void write_sqrt(double x)

// Precondition: x >= 0.

// Postcondition: The square root of x has

// been written to the standard output.

...
}

• The postcondition always
indicates what work the function
has accomplished. In this case,
when the function returns the
square root of x has been written.

Another Example

bool is_vowel(char letter)

// Precondition: letter is an uppercase or

// lowercase letter (in the range 'A' ... 'Z' or 'a' ... 'z') .

// Postcondition: The value returned by the

// function is true if Letter is a vowel;

// otherwise the value returned by the function is

// false.

...

Another Example

is_vowel('A');

is_vowel(' Z');

is_vowel('?');

What values will be returned by these function calls ?

Another Example

is_vowel('A');

is_vowel(' Z');

is_vowel('?');

true

false

Nobody knows, because the

precondition has been violated.

What values will be returned by these function calls ?

Another Example

is_vowel('A');

is_vowel(' Z');

is_vowel('?');

What values will be returned by

these function calls ?

Violating the precondition

might even crash the entire program.

A Quiz

Suppose that you call a function, and you neglect to make sure that

the precondition is valid. Who is responsible if this inadvertently

causes a 40-day flood or other disaster?

A. You

B. The programmer who wrote that torrential function

C. Noah

Always make sure the precondition is valid . . .

• The programmer who calls the function is responsible
for ensuring that the precondition is valid when the
function is called.

AT THIS POINT, MY

PROGRAM CALLS YOUR

FUNCTION, AND I MAKE

SURE THAT THE

PRECONDITION IS

VALID.

. . . so the postcondition becomes true at the
function’s end.

• The programmer who writes the
function counts on the
precondition being valid, and
ensures that the
postcondition becomes true
at the function’s end.

THEN MY FUNCTION

WILL EXECUTE, AND WHEN

IT IS DONE, THE

POSTCONDITION WILL BE

TRUE.

I GUARANTEE IT.

On the other hand, careful programmers also follow
these rules:

• Detect when a precondition has been violated.

• Print an error message and halt the program...

...rather than causing a disaster.

Which of the following statements would you use to
detect if a precondition has been violated?

void write_sqrt(double x)

// Precondition: x >= 0.

// Postcondition: The square root of x has

// been written to the standard output.

{

//Program implementation

}

A. if(x<0) return;
B. assert(x >= 0);
C. if(x<0) cerr<<“Input “<<x<< “ is less than 0”;
D. Option B or C
E. Any of the above would work

Example

void write_sqrt(double x)

// Precondition: x >= 0.

// Postcondition: The square root of x has

// been written to the standard output.

{

assert(x >= 0);

... The assert function
(described in Section 1.1) is
useful for detecting violations
of a precondition.

 Chapter 2 introduces Object
Oriented Programming.

 OOP is an approach to programming

which supports the creation of new

data types and operations to

manipulate those types.

Intro to Object Oriented Programming

Data Structures

and Other Objects

Using C++

What is this Object ?

• There is no real answer to the
question, but we’ll call it a “thinking
cap”.

• The plan is to describe a thinking

cap by telling you what actions

can be done to it.

Description of the thinking cap

• You may put a piece of paper in each of the two
slots (green and red), with a sentence written
on each.

• You may push the green button and the thinking

cap will speak the sentence from the green

slot’s paper.

• And same for the red button.

Example

Example

That test was

a breeze !

Example

I should

study harder !

Thinking Cap Definition

• We can define the thinking cap
using a data type called a
class.

class thinking_cap

{

. . .

};

Components of the thinking cap

• The class will have two components
called green_string and red_string..

How is a class different from a struct?

class thinking_cap

{

char green_string[50];

char red_string[50];

…

};

Thinking Cap as an Abstract Data Type

 The two components will be
private member variables.
This ensures that nobody can
directly access this
information. The only access
is through functions that we
provide for the class.

class thinking_cap

{

private:

char green_string[50];

char red_string[50];

};

Thinking Cap as an Abstract Data Type

• Public interface – can be accessed
by the user of the class

• List member function (methods) that
manipulate data here!

• Provide a clear interface to data!!

class thinking_cap

{

public:

. . .

private:

char green_string[50];

char red_string[50];

};
Prototypes for the

thinking cap

functions go here,

after the word

public:

Thinking Cap Implementation

• List member function (methods)
that manipulate data – ONLY
declarations

class thinking_cap

{

public:

. . .

private:

char green_string[50];

char red_string[50];

};

Thinking Cap Implementation

class thinking_cap

{

public:

void slots(char new_green[], char new_red[]);

void push_green() const;

void push_red() const;

private:

char green_string[50];

char red_string[50];

};

Our thinking cap has at least three member functions:

Thinking Cap Implementation

class thinking_cap

{

public:

void slots(char new_green[], char new_red[]);

void push_green() const;

void push_red() const;

private:

char green_string[50];

char red_string[50];

};

The keyword const appears after two prototypes:

Files for the Thinking Cap

• The thinking_cap class definition,
which we have just seen, is placed
with documentation in a file called
thinker.h, outlined here.

• The implementations of the

three member functions will be placed

in a separate file called thinker.cxx,

which we will examine in a few

minutes.

Documentation

Class definition:

• thinking_cap class

definition which we

have already seen

Using the Thinking Cap

• A program that wants to
use the thinking cap must
include the thinker header
file (along with its other
header inclusions).

#include <iostream>

#include <cstdlib>

#include "thinker.h"

...

Using the Thinking Cap

#include <iostream.h>

#include <stdlib.h>

#include "thinker.h"

int main()

{

thinking_cap student:

thinking_cap fan;

• How is student different
from “thinking_cap”?

• What happens in memory
after this code is executed?

Using the Thinking Cap

• Activating the student’s
slot method

#include <iostream.h>

#include <stdlib.h>

#include "thinker.h"

int main()

{

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

A Quiz

How would you activate
student's push_green member
function ?

(Write your answer)

(After that discuss with your
peer group)

int main()

{

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

class thinking_cap

{

public:

void slots(char new_green[], char new_red[]);

void push_green() const;

void push_red() const;

private:

char green_string[50];

char red_string[50];

};

A Quiz

What would be the output of

student's push_green member

function at this point in the

program ?

int main()

{

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

student.push_green();

class thinking_cap

{

public:

void slots(char new_green[], char new_red[]);

void push_green() const;

void push_red() const;

private:

char green_string[50];

char red_string[50];

};

A Quiz

Trace through this
program, and tell
me the complete
output.

int main()

{

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

fan.slots("Go Cougars!", "Boo!");

student.push_green();

fan.push_green();

student.push_red();

What you know so far?

• Class = Data + Member Functions.

• Abstract Data Type = Class + information hiding

• You know how to define a new class type, and place the

definition in a header file.

• You know how to use the header file in a program which

declares instances of the class type.

• You know how to activate member functions.

But you still need to learn how to write the bodies of a class’s

methods.

Thinking Cap Implementation

class thinking_cap

{

public:

void slots(char new_green[], char new_red[]);

void push_green();

void push_red();

private:

char green_string[50];

char red_string[50];

};

Thinking Cap Implementation

class thinking_cap

{

public:

void slots(char new_green[], char new_red[]);

void push_green();

void push_red();

private:

char green_string[50];

char red_string[50];

};

• Implement the class in a separate .cxx file.

• With your peer group implement the slots function

Thinking Cap Implementation

void thinking_cap::slots(char new_green[], char new_red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);

strcpy(green_string, new_green);

strcpy(red_string, new_red);

}

There are two special features about a
member function’s body . . .

Thinking Cap Implementation

Why use the scope resilution operator?

void thinking_cap::slots(char new_green[], char new_red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);

strcpy(green_string, new_green);

strcpy(red_string, new_red);

}

Thinking Cap Implementation

Within the body of the function, the class’s
member variables and other methods may all be
accessed.

void thinking_cap::slots(char new_green[], char new_red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);

strcpy(green_string, new_green);

strcpy(red_string, new_red);

}

But, whose member

variables are

these? Are they

student.green_string

student.red_string

fan.green_string

fan.red_string
?

Thinking Cap Implementation

Within the body of the function, the class’s
member variables and other member functions
may all be accessed.

void thinking_cap::slots(char new_green[], char new_red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);

strcpy(green_string, new_green);

strcpy(red_string, new_red);

}

If we activate student.slots:

student.green_string

student.red_string

Thinking Cap Implementation

Within the body of the function, the class’s
member variables and other member functions
may all be accessed.

void thinking_cap::slots(char new_green[], char new_red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);

strcpy(green_string, new_green);

strcpy(red_string, new_red);

}

If we activate fan.slots:

fan.green_string

fan.red_string

Thinking Cap Implementation

void thinking_cap::push_green

{

cout << green_string << endl;

}

Here is the implementation of the push_green
member function, which prints the green message:

Thinking Cap Implementation

void thinking_cap::push_green

{

cout << green_string << endl;

}

Here is the implementation of the push_green
member function, which prints the green message:

Notice how this member function implementation

uses the green_string member variable of the object.

A Common Pattern

• Often, one or more member functions will place data in the
member variables...

class thinking_cap {

public:

void slots(char new_green[], char new_red[]);

void push_green() const;

void push_red() const;

private:

char green_string[50];

char red_string[50];
};

slots push_green & push_red

 Classes have member variables and member functions (method).
An object is a variable where the data type is a class.

 You should know how to declare a new class type, how to

implement its member functions, how to use the class type.

 Frequently, the member functions of an class type place information

in the member variables, or use information that's already in the

member variables.

 In the future we will see more features of OOP.

Summary

Next time

• Constructors

