
BINARY SEARCH TREES

Problem Solving with Computers-I

https://ucsb-cs24-sp17.github.io/

How fast is BST find algorithm?

How long does it take to find an element in the tree in terms of the tree’s height,

H?

Height of a node: the height of a node is the number of edges on the longest path from the

node to a leaf

Height of a tree: the height of the root of the tree

2

Relating H (height) and N (#nodes)

find is O(H), we want to find a f(N) = H
Level 0

Level 1

Level 2

……

How many nodes are on level L in a completely filled binary search tree?

A. 2

B. L

C. 2*L

D. 2L

3

Relating H (height) and N (#nodes)

find is O(H), we want to find a f(N) = H
Level 0

Level 1

Level 2

……

Finally, what is the height (exactly) of the tree in terms of N?

And since we knew finding a node was O(H), we now know it is O(log2 N)

4

Worst case analysis

Are binary search trees really faster than linked lists for finding elements?

• A. Yes

• B. No

data:

next:

1 data:

next:

2 data:

next:

3

5

How many compares to locate a key in the BST?

1. Worst case:

2. Best case:

3. Average case:

Average case analysis of a “successful” find

5

3

4

Given a BST having N nodes x1, .. xN, such that key(xi) = ki

6

Conclusion: The average time to find an element in a BST with no restrictions on

shape is Θ(log N).

Here is the result! Proof is a bit involved but if you are

interested in the proof, come to office hours

𝐷𝑎𝑣𝑔 𝑁 Average #comparisons to find a single item in any

BST with N nodes

Which of the following is/are balanced trees?
And thus can become AVL trees by adding the balance factors

42

10 67

53 90

87

42

10 67

53 90

87

11

42

10 67

53 90

A
B C

D. A&C

E. A&B&C
Annotate the trees with balance factors

AVL Tree Balance Factors

42

10 67

53 90

The balance factor at a node in a tree is

height(left subtree) – height(right subtree)

The height of tree with 1 node is 0

The height of a tree with 0 nodes is -1

An AVL Tree is worst case O(logN) to find an element!

But how does the tree stay balanced??

How would you prove this?

Come up with a formula that shows that the height of the tallest AVL tree

with N nodes is never bigger than c*logN + k, for some c and k (assuming

large N).

The key to this proof is showing that the height stays “small”, no matter

how legally “unbalanced” the tree is.

Inserting and rebalancing

30

15 70

10 20 60 85

5 50 65 80 90

40 55

-1

1

1 0

0

1

01

0 0 0 0

0 0

Insert 3

Inserting and rebalancing

30

15 70

10 20 60 85

5 50 65 80 90

40 55

-1

1

1 0

0

1

01

0 0 0 0

0 0

Insert 3

3

0
Propagate news up

Inserting and rebalancing

30

15 70

10 20 60 85

5 50 65 80 90

40 55

-1

1

1 0

1

1

01

0 0 0 0

0 0

Insert 3

3

0

We’re OK,

Keep going up

Inserting and rebalancing

30

15 70

10 20 60 85

5 50 65 80 90

40 55

-1

1

2 0

1

1

01

0 0 0 0

0 0

Insert 3

3

0

Uh oh!

Inserting and rebalancing

30

15 70

10 20 60 85

5 50 65 80 90

40 55

-1

1

2 0

1

1

01

0 0 0 0

0 0

Insert 3

3

0

Rotate!

cut

Inserting and rebalancing

30

15 70

10 20 60 85

5 50 65 80 90

40 55

0 0

0 0 0 0

0 0

Insert 3

3

0

lift

-1

1

2

1

1

1

Inserting and rebalancing

30

15 70

10

20 60 855

50 65 80 90

40 55

-1

1

2

01

1

01

0 0 0 0

0 0

Insert 3

3

0

Adjust

and reattach

We just did a single rotation of 5 at 10

A.k.a. a single right rotation at 10

30

15 70

10

20 60 855

50 65 80 90

40 55

-1

1

0

00

1

01

0 0 0 0

0 0

Insert 3

3

0

Done!

Single rotation practice

30

15 70

20 60

0

-1

0

1

0

What could you insert into this AVL tree that would result in a single rotation?

A. 71

B. 10

C. 50

D. 66

Single rotation practice

30

15 70

20 60

0

0 0

Insert 50. Draw the resulting AVL tree. (Don’t peek)

-1 1

Single rotation practice

30

15 70

20 60

0

-1

0

2

1

After insertion

50

0

Single rotation practice

30

15

7020

60

0

-1

0 0

0

After rotation

50

0

Single rotation is not enough

30

15 70

20 60

0

-1

0

1

0

What happens if we insert 66?

Single rotation is not enough

30

15 70

20 60

0

-1

0

2

-1

Why won’t a single rotation work? Try it.

66

0

cut

Single rotation is not enough

30

15 70

20 60

0

-1

0

2

-1

66

0

lift

Single rotation is not enough

30

15

70

20

60

0

-1

0

2

-1

66

0

UH OH!

Single rotation is not enough

30

15

70

20

60

0

-1

0

2

-1

66

0

UH OH AGAIN!

Reattaching 66 here will always work with respect to the BST properties, and

we know that 66 will always fit here because 60 used to be 70s left child.

The problem is that this won’t fix the balance issue!

Double rotation to the rescue

30

15 70

20 60

0

-1

0

2

-1

Single rotations only work to balance the tree when involved nodes are “in a line”

This is not the case here. We want 66 to be the top node, not 60.

So we will first rotate left at 60 to get 66 in the middle, then we can rotate right at 70.

66

0

Double rotation to the rescue

30

15 70

20 60

0

-1

0

2

-1

Single rotations only work when involved nodes are “in a line”

So we will first rotate left at 60, then we can rotate right at 70.

66

0

cut

Double rotation to the rescue

30

15 70

20 60

0

-1

0

2

-1

Single rotations only work when involved nodes are “in a line”

So we will first rotate left around 60, then we can rotate right around 70.

66

0 lift

Double rotation to the rescue

30

15 70

20

60

0

-1

0

2

1

Single rotations only work when involved nodes are “in a line”

So we will first rotate left at 60, then we can rotate right at 70.

66

0 adjust

Double rotation to the rescue

30

15 70

20

60

0

-1

0

2

1

Single rotations only work when involved nodes are “in a line”

So we will first rotate left at 60, then we can rotate right at 70.

66

0 reattach

Double rotation to the rescue

30

15 70

20

60

0

-1

0

2

1

Single rotations only work when involved nodes are “in a line”

So we will first rotate left around 60, then we can rotate right around 70.

66

0

Where in the tree above should I cut to start the second rotation?

A

B

C

Double rotation to the rescue

30

15

7020 60

0

-1

0

0

0

Single rotations only work when involved nodes are “in a line”

So we will first rotate left at 60, then we can rotate right at 70.

66

0

