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Imposter panel: Tomorrow Thurs (06/01), 

12:30pm to 1:50pm, HFH 1132 

Come hear faculty, grad 

students and undergrad 

alumni talk about their 

careers and how they 

dealt with feeling like an 

Imposter!

Please RSVP : https://goo.gl/forms/ttvzHNPWAZ0GCPA92

https://goo.gl/forms/ttvzHNPWAZ0GCPA92


Which of the following is/are a tree?

A. B.

C.

D. A & B

E. All of A-C
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Lab08: Binary Search Tree – What is it?
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What are the numbers in the nodes?



Binary Search Tree – What is it?
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For any node,

Keys in node’s left subtree  <= Node key

Node key < Keys in node’s right subtree

Do the keys have to be integers?



Which of the following is/are a binary search tree?
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Binary Search Trees

• What are the operations supported?

• What are the running times of these operations?

• How do you implement the BST i.e. operations supported by it?
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Binary Search Trees

• What is it good for?

• If it satisfies a special property i.e. Balanced, you can think of it as a dynamic version of the 

sorted array
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Under the hood: Searching an element in the BST
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To search for element with key k

1. Start at the root

2. If k=key(root), found key, stop.

3. Else If k< key(root), recursively search the left subtree: TL

Else recursively search the right subtree: TR
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Search for 41.

Now search for 43.



Traversing the BST 
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Different methods of tree traversal:

• In order traversal

• Pre order traversal 

• Post order traversal



BST, with templates:

template<typename Data>

class BSTNode {

public:

BSTNode<Data>* left;

BSTNode<Data>* right;

BSTNode<Data>* parent;

Data const data;

BSTNode( const Data & d ) :

data(d) { 

left = right = parent = 0;

}   

};
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BST, with templates:

template<typename Data>

class BSTNode {

public:

BSTNode<Data>* left;

BSTNode<Data>* right;

BSTNode<Data>* parent;

Data const data;

BSTNode( const Data & d ) :

data(d) { 

left = right = parent = 0;

}   

};

How would you create a BSTNode

object on the runtime stack? 
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A. BSTNode n(10);

B. BSTNode<int> n;

C. BSTNode<int> n(10);

D. BSTNode<int> n = new BSTNode<int>(10);

E. More than one of these will work

{ } syntax OK too



BST, with templates:

template<typename Data>

class BSTNode {

public:

BSTNode<Data>* left;

BSTNode<Data>* right;

BSTNode<Data>* parent;

Data const data;

BSTNode( const Data & d ) :

data(d) { 

left = right = parent = 0;

}   

};

How would you create a pointer to 

BSTNode with integer data? 
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A. BSTNode* nodePtr;

B. BSTNode<int> nodePtr;

C. BSTNode<int>* nodePtr;



BST, with templates:

template<typename Data>

class BSTNode {

public:

BSTNode<Data>* left;

BSTNode<Data>* right;

BSTNode<Data>* parent;

Data const data;

BSTNode( const Data & d ) :

data(d) { 

left = right = parent = 0;

}   

};

Complete the line of code to create a 

new BSTNode object with int data on the 

heap and assign nodePtr to point to it.
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BSTNode<int>* nodePtr



Working with a BST
template<typename Data>
class BST {

private:

/** Pointer to the root of this BST, or 0 if the BST is empty */
BSTNode<Data>* root;

public:

/** Default constructor. Initialize an empty BST. */
BST() : root(nullptr){  }

void insertAsLeftChild(BSTNode<Data>* parent, const Data & item) 
{

// Your code here
}
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Working with a BST: Insert

void insertAsLeftChild(BSTNode<Data>* parent, const Data & item) 
{

// Your code here
}

Which line of code correctly inserts the data item into the BST as the left

child of the parent parameter.
A. parent.left = item;

B. parent->left = item;

C. parent->left = BSTNode(item);

D. parent->left = new BSTNode<Data>(item);

E. parent->left = new Data(item);
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Working with a BST: Insert

void insertAsLeftChild(BSTNode<Data>* parent, const Data & item) 
{

parent->left = new BSTNode<Data>(item);
}

Is this function complete?  (i.e. does it to everything it needs to correctly insert the node?)

A. Yes. The function correctly inserts the data

B. No.  There is something missing.
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Working with a BST: Insert

void insertAsLeftChild(BSTNode<Data>* parent, const Data & item) 
{

parent->left = new BSTNode<Data>(item);

}
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How fast is BST find algorithm?

How long does it take to find an element in the tree in terms of the tree’s height, 

H?

Height of a node: the height of a node is the number of edges on the longest path from the 

node to a leaf

Height of a tree: the height of the root of the tree
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Relating H (height) and N (#nodes)

find is O(H), we want to find a f(N) = H
Level 0

Level 1

Level 2

……

How many nodes are on level L in a completely filled binary search tree?

A. 2

B. L

C. 2*L

D. 2L
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Relating H (height) and N (#nodes)

find is O(H), we want to find a f(N) = H
Level 0

Level 1

Level 2

……

Finally, what is the height (exactly) of the tree in terms of N?

And since we knew finding a node was O(H), we now know it is O(log2 N)
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Worst case analysis

Are binary search trees really faster than linked lists for finding elements?

• A. Yes

• B. No

data:

next:

1 data:

next:

2 data:

next:

3
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How many compares to locate a key in the BST? 

1. Worst case:

2. Best case:

3. Average case:

Average case analysis of a “successful” find 

5

3

4

Given a BST having N nodes x1, .. xN, such that key(xi)  = ki
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Conclusion: The average time to find an element in a BST with no restrictions on 

shape is Θ(log N).

Here is the result! Proof is a bit involved but if you are 

interested in the proof, come to office hours

𝐷𝑎𝑣𝑔 𝑁 Average #comparisons to find a single item in any 

BST with N nodes


