
BINARY SEARCH TREES

Problem Solving with Computers-I

https://ucsb-cs24-sp17.github.io/

Imposter panel: Tomorrow Thurs (06/01),

12:30pm to 1:50pm, HFH 1132

Come hear faculty, grad

students and undergrad

alumni talk about their

careers and how they

dealt with feeling like an

Imposter!

Please RSVP : https://goo.gl/forms/ttvzHNPWAZ0GCPA92

https://goo.gl/forms/ttvzHNPWAZ0GCPA92

Which of the following is/are a tree?

A. B.

C.

D. A & B

E. All of A-C

3

Lab08: Binary Search Tree – What is it?

42

32

12

45

41

50

47

46

51

48

4

What are the numbers in the nodes?

Binary Search Tree – What is it?

42

32

12

45

41

50

47

46

51

48

5

For any node,

Keys in node’s left subtree <= Node key

Node key < Keys in node’s right subtree

Do the keys have to be integers?

Which of the following is/are a binary search tree?

42

32

12

42

3212

42

3212 65

30 38

A. B.

42

32

12

56

45

D.

C.

E. More than one of these

Binary Search Trees

• What are the operations supported?

• What are the running times of these operations?

• How do you implement the BST i.e. operations supported by it?

7

Binary Search Trees

• What is it good for?

• If it satisfies a special property i.e. Balanced, you can think of it as a dynamic version of the

sorted array

8

Under the hood: Searching an element in the BST

42

32

12

45

41

To search for element with key k

1. Start at the root

2. If k=key(root), found key, stop.

3. Else If k< key(root), recursively search the left subtree: TL

Else recursively search the right subtree: TR

9

Search for 41.

Now search for 43.

Traversing the BST

10

42

32

12

45

41 4743

Different methods of tree traversal:

• In order traversal

• Pre order traversal

• Post order traversal

BST, with templates:

template<typename Data>

class BSTNode {

public:

BSTNode<Data>* left;

BSTNode<Data>* right;

BSTNode<Data>* parent;

Data const data;

BSTNode(const Data & d) :

data(d) {

left = right = parent = 0;

}

};

11

BST, with templates:

template<typename Data>

class BSTNode {

public:

BSTNode<Data>* left;

BSTNode<Data>* right;

BSTNode<Data>* parent;

Data const data;

BSTNode(const Data & d) :

data(d) {

left = right = parent = 0;

}

};

How would you create a BSTNode

object on the runtime stack?

12

A. BSTNode n(10);

B. BSTNode<int> n;

C. BSTNode<int> n(10);

D. BSTNode<int> n = new BSTNode<int>(10);

E. More than one of these will work

{ } syntax OK too

BST, with templates:

template<typename Data>

class BSTNode {

public:

BSTNode<Data>* left;

BSTNode<Data>* right;

BSTNode<Data>* parent;

Data const data;

BSTNode(const Data & d) :

data(d) {

left = right = parent = 0;

}

};

How would you create a pointer to

BSTNode with integer data?

13

A. BSTNode* nodePtr;

B. BSTNode<int> nodePtr;

C. BSTNode<int>* nodePtr;

BST, with templates:

template<typename Data>

class BSTNode {

public:

BSTNode<Data>* left;

BSTNode<Data>* right;

BSTNode<Data>* parent;

Data const data;

BSTNode(const Data & d) :

data(d) {

left = right = parent = 0;

}

};

Complete the line of code to create a

new BSTNode object with int data on the

heap and assign nodePtr to point to it.

14

BSTNode<int>* nodePtr

Working with a BST
template<typename Data>
class BST {

private:

/** Pointer to the root of this BST, or 0 if the BST is empty */
BSTNode<Data>* root;

public:

/** Default constructor. Initialize an empty BST. */
BST() : root(nullptr){ }

void insertAsLeftChild(BSTNode<Data>* parent, const Data & item)
{

// Your code here
}

15

Working with a BST: Insert

void insertAsLeftChild(BSTNode<Data>* parent, const Data & item)
{

// Your code here
}

Which line of code correctly inserts the data item into the BST as the left

child of the parent parameter.
A. parent.left = item;

B. parent->left = item;

C. parent->left = BSTNode(item);

D. parent->left = new BSTNode<Data>(item);

E. parent->left = new Data(item);

16

Working with a BST: Insert

void insertAsLeftChild(BSTNode<Data>* parent, const Data & item)
{

parent->left = new BSTNode<Data>(item);
}

Is this function complete? (i.e. does it to everything it needs to correctly insert the node?)

A. Yes. The function correctly inserts the data

B. No. There is something missing.

17

Working with a BST: Insert

void insertAsLeftChild(BSTNode<Data>* parent, const Data & item)
{

parent->left = new BSTNode<Data>(item);

}

18

How fast is BST find algorithm?

How long does it take to find an element in the tree in terms of the tree’s height,

H?

Height of a node: the height of a node is the number of edges on the longest path from the

node to a leaf

Height of a tree: the height of the root of the tree

19

Relating H (height) and N (#nodes)

find is O(H), we want to find a f(N) = H
Level 0

Level 1

Level 2

……

How many nodes are on level L in a completely filled binary search tree?

A. 2

B. L

C. 2*L

D. 2L

20

Relating H (height) and N (#nodes)

find is O(H), we want to find a f(N) = H
Level 0

Level 1

Level 2

……

Finally, what is the height (exactly) of the tree in terms of N?

And since we knew finding a node was O(H), we now know it is O(log2 N)

21

Worst case analysis

Are binary search trees really faster than linked lists for finding elements?

• A. Yes

• B. No

data:

next:

1 data:

next:

2 data:

next:

3

22

How many compares to locate a key in the BST?

1. Worst case:

2. Best case:

3. Average case:

Average case analysis of a “successful” find

5

3

4

Given a BST having N nodes x1, .. xN, such that key(xi) = ki

23

Conclusion: The average time to find an element in a BST with no restrictions on

shape is Θ(log N).

Here is the result! Proof is a bit involved but if you are

interested in the proof, come to office hours

𝐷𝑎𝑣𝑔 𝑁 Average #comparisons to find a single item in any

BST with N nodes

