RECURSION

Problem Solving with Computers-I
https://ucsb-cs24-sp17.github.io/

How much more time do you need to get 80% or more on PA4?
 A. I already have that score
 B. I am on track to complete the PA tonight
 C. One more day
 D. One more week
 E. I plan to let this PA slide

Thinking recursively!

- Many structures in nature and CS that are recursive
- A recursive solution to a problem is all about describing the problem in terms of a smaller version of itself!

Thinking recursively!

1. Base case: solve the smallest version(s) of the problem
2. Recursive case: describe the problem in terms of itself!

- Assume you have a solution with smaller input size!
- Describe the problem in terms of a smaller version of itself.

Example problem: Print all the elements of a linked-list backwards!
head

What is the smallest version of this problem?

Step 1: Base case!

//Write code for the smallest version of the problem void printBackwards(Node * head)\{

Step 2: Write the recursive case !

- Assume you have a solution for a smaller version of the problem!!!!
- Describe the problem in terms of a smaller version of itself
void printBackwards(Node * head)\{
if (head $==$ NULL) //Base case return;

Example 2: Find the sum of the elements of a linked-list

Step 1: Base case!

- Write code for the smallest version of the problem int sum(Node * head)\{

Step 2: Write the recursive case !

- Assume you have a solution for a smaller version of the problem!!!!
- Describe the problem in terms of a smaller version of itself void sum(Node * head) \{
if (head == NULL) //Base case

Example 3: Backwards with arrays

name	'B'	'o'	' n '	'd'	'0'	'0'	${ }^{7} 1$

void printElementsBackwards(char *arr, int len)\{

```
if(len<=0){ //Base case
        return;
    }
//Write your code here
```


Next time

- Binary Search Trees

