
ITERATORS CONTD, QUEUE

Problem Solving with Computers-I

https://ucsb-cs24-sp17.github.io/

pa04 grades so far: Number of students 127

Number of submissions: 109 : 85%

2

Score Percentage of

students

100 21%

90 - 100 1.5%

80 - 90 0.5%

70 - 80 2%

Below 60% (not zero) 49%

0 26%

C++ Iterators

• Iterators are generalized pointers.

• Let’s consider a very simple algorithm (printing in order) applied to a very simple data

structure (sorted array)

void print_inorder(int* p, int size) {

for(int i=0; i<size; i++) {

std::cout << *p << std::endl;

++p;

}

}

• We would like our print “algorithm” to also work with other data structures

• How should we modify it to print the elements of a LinkedList?

3

10 20 25 30 46 50 55 60

C++ Iterators

Consider our implementation of LinkedList

4

p

10 20 25 30 46 50 55 60

void print_inorder(LinkedList<int> *p, int size) {

for(int i=0; i<size; i++)

{

std::cout << *p <<std::endl;

++p;

}

}

When will the above code work?

A. The operator “<<“ is overloaded to print the data key of a LinkedList Node

B. The LinkedList class overloads the ++ operator

C. Both A and B

D. None of the above

C++ Iterators
• To solve this problem the LinkedList class has to supply to the client (print_inorder) with a

generic pointer (an iterator object) which can be used by the client to access data in the

container sequentially, without exposing the underlying details of the class

5

void print_inorder(LinkedList<int>& ll) {

LinkedList<int>::iterator itr = ll.begin();

LinkedList<int>::iterator en = ll.end();

while(itr!=en)

{

std::cout << *itr <<std::endl;

++itr;

}

}

curr

itr 20 2510 30

C++ Iterators

6

What should begin() return?

A. The address of the first node in the

linked list container class

B. An iterator type object that contains

the address of the first node

C. None of the above

void print_inorder(LinkedList<int>& ll) {

LinkedList<int>::iterator itr = ll.begin();

LinkedList<int>::iterator en = ll.end();

while(itr!=en)

{

std::cout << *itr <<std::endl;

++itr;

}

}

curr

itr 20 2510 30

C++ Iterators

7

void print_inorder(LinkedList<int>& ll) {

LinkedList<int>::iterator itr = ll.begin();

LinkedList<int>::iterator en = ll.end();

while(itr!=en)

{

std::cout << *itr <<std::endl;

++itr;

}

}

curr

itr 20 2510 30

List the operators that the

iterator has to implement?

A. *

B. ++

C. !=

D. All of the above

E. None of the above

C++ Iterators

8

void print_inorder(LinkedList<int>& ll) {

LinkedList<int>::iterator itr = ll.begin();

LinkedList<int>::iterator en = ll.end();

while(itr!=en)

{

std::cout << *itr <<std::endl;

++itr;

}

}

curr

itr 20 2510 30

How should the diagram change as a

result of the statement ++itr; ?

C++ Iterators

9

void print_inorder(LinkedList<int>& ll) {

auto itr = ll.begin();

auto en = ll.end();

while(itr!=en)

{

std::cout << *itr <<std::endl;

++itr;

}

}

curr

itr 20 2510 30

How should the diagram change as a

result of the statement ++itr; ?

Demo

• Provide an iterator to the linkedList template class written in last lecture

10

The Queue Operations

• A queue is like a line of people waiting for a
bank teller. The queue has a front and a rear.

$ $

Front

Rear

The Queue Operations

• New people must enter the queue at the rear. The
C++ queue class calls this a push, although it is
usually called an enqueue operation.

$ $

Front

Rear

The Queue Operations

• When an item is taken from the queue, it always comes
from the front. The C++ queue calls this a pop,
although it is usually called a dequeue operation.

$ $

Front

Rear

The Queue Class

• The C++ standard template

library has a queue template

class.

• The template parameter is

the type of the items that can

be put in the queue.

template <class Item>

class queue<Item>

{

public:

queue();

void push(const Item& entry);

void pop();

bool empty() const;

Item front() const;

…

Array Implementation

• A queue can be implemented with an array, as shown
here. For example, this queue contains the integers 4 (at
the front), 8 and 6 (at the rear).

[0] [1] [2] [3] [4] [5] . . .

An array of integers
to implement a
queue of integers

4 8 6

We don't care what's in

this part of the array.

Array Implementation

• The easiest implementation also keeps track
of the number of items in the queue and the
index of the first element (at the front of the
queue), the last element (at the rear).

[0] [1] [2] [3] [4] [5] . . .

4 8 6

size3

first0

last2

A Dequeue Operation

• When an element leaves the queue, size is
decremented, and first changes, too.

[0] [1] [2] [3] [4] [5] . . .

4 8 6

size2

first1

last2

An Enqueue Operation

• When an element enters the queue, size is
incremented, and last changes, too.

[0] [1] [2] [3] [4] [5] . . .

28 6

size3

first1

last3

At the End of the Array

• There is special behavior at the end of the
array. For example, suppose we want to add
a new element to this queue, where the last
index is [5]:

[0] [1] [2] [3] [4] [5]

2 16

size3

first3

last5

At the End of the Array

• The new element goes at the front of the
array (if that spot isn’t already used):

[0] [1] [2] [3] [4] [5]

2 16

size4

first3

last0

4

Array Implementation

• Easy to implement

• But it has a limited capacity with a fixed array

• Or you must use a dynamic array for an unbounded
capacity

• Special behavior is needed when the rear reaches the
end of the array.

[0] [1] [2] [3] [4] [5] . . .

4 8 6

size3

first0

last2

Linked List Implementation

• A queue can also be implemented with a linked

list with both a head and a tail pointer.

tail_ptr

10 15 7

null

13

head_ptr tail_ptr

Linked List Implementation

• Which end do you think is the front of the queue? Why?

A. Node with value 13

B. Node with value 7

10 15 7

null

13

head_ptr

tail_ptr

head_ptr tail_ptr

Linked List Implementation

head_ptr

• The head_ptr points to the front of the list.

• Because it is harder to remove items from the tail of the
list.

tail_ptr

Front Rear

10 15 7

null

13

head_ptr tail_ptr

• Like stacks, queues have many applications.

• Items enter a queue at the rear and leave a queue at the

front.

• Queues can be implemented using an array or using a

linked list.

Summary

