ITERATORS CONTD, STACKS

Problem Solving with Computers-I C+
GitHub
https://ucsb-cs24-spl7.github.io/ ‘\j:f:q s
sol) "\9‘{}._. L

How Is pa04 going?

Done

| am on track to finish

| am passing testl()
Having trouble with testl()
Haven't started

mo o w»

Stacks — container class available in the C++ STL

- Container class that uses the Last In First Out (LIFO) principle

- Methods
.. push()
. pop()
i, top()
v. empty()

Demo reversing a string, and review of lab06 code

Notations for evaluating expression

- Infix number operator number (7+(3*5))-(412)
- Prefix operators precede the operands
- Postfix operators come after the operands

Lab06 — part 1: Evaluate a fully parenthesized infix
expression

(4*((5+3.2)/1.5))// okay

(4*((5+3.2)/1.5)// unbalanced parens - missing last)

(4*(5+3.2)/1.5))// unbalanced parens - missing one ('

4*((5+3.2)/1.5) /] not fully-parenthesized at "*’ operation

(4*(5+3.2)/1.5)// not fully-parenthesized at '/’ operation

((2*2)+(8+4))

Initial Read
empty and push
stack first (

Read
and push
second (

~\ ™\

((2*2)+(8+4))

Initial Read Read
empty and push and push
stack first (second (

What should be done after the first

right parenthesis is encountered?

A. Push the right parenthesis onto the
stack

B. If the stack is not empty pop the next
item on the top of the stack

C. Ignore the right parenthesis and
continue checking the next character

D. None of the above

((2*2)+(8+4))

Initial Read Read
empty and push and push
stack first (second (

Read first
) and pop
matching (

Read
and push
third (

N\ M\

Read
second)
and pop
matching (

Read third
) and pop
the last (

Evaluating a fully parenthesized infix expression

(CC6 + 9)/3)*(6 - 4))

10

Evaluating a fully parenthesized infix expression

Characters read so far (shaded):
(€6 + 9) / 3) * (6 -4))

Numbers Operations
9
6 +

11

Evaluating a fully parenthesized infix expression

Characters read so far (shaded):
(CC6 + 9) / 3) * (6 - 4))

Numbers

9
6

Operations

-+

Before computing 6 + 9

6 + 9 is 15

Numbers Operations

15

After computing 6 + 9

12

Evaluating a fully parenthesized infix expression

Characters read so far (shaded):

(CC6 + 9) / 3) * (6 - 4))

Numbers

3
15

Operations

/

Before computing 15/3

15 / 3 is 5

Numbers Operations

5
After computing 15/3

Evaluating post fix expressions using a single stack

Postfix: 735*+ 42/ - Infix: (7+(3*5))—(4 /2)

C++ lterators

- Iterators are generalized pointers.

- Let’s consider a very simple algorithm (printing in order) applied to a very simple data
structure (sorted array)

10 20 25 30 46 50 55 60

void print inorder (int* p, int size) ({
for(int 1=0; i<size; i++) {
std: :cout << *p << std::endl;
++p;

}
- We would like our print “algorithm” to also work with other data structures

- How should we modify it to print the elements of a LinkedList?

C++ lterators

10 20 25 30 46 50 55 60

A

P Consider our implementation of LinkedList

void print inorder (LinkedList<int> *p, int size) {
for(int i=0; i<size; i++)
{

std: :cout << *p <<std::endl;
++p;

When will the above code work?

A. The operator “<<” is overloaded to print the data key of a LinkedList Node
B. The LinkedList class overloads the ++ operator
C. BothAand B

D. None of the above

C++ lterators

- To solve this problem the LinkedList class has to supply to the client (print_inorder) with a
generic pointer (an iterator object) which can be used by the client to access data in the
container sequentially, without exposing the underlying details of the class

void print inorder (LinkedList<int>& 11) {
LinkedList<int>::iterator itr = 1ll.begin();
LinkedList<int>::iterator en = ll.end() ;

while (itr!=en)
{

std: :cout << *itr <<std::endl;
++itr;

curr

Demo

- Provide an iterator to the linkedList template class written in last lecture

C++ lterators

What should begin() return?
A. The address of the first node in the

linked list container class
VOld print_inorder (LlnkedLlSt<lnt>& 11) { B An iterator type Object that Contains

LinkedList<int>::iterator itr = 1ll.begin(); the address of the first node
LinkedList<int>::iterator en = 1ll.end(); C. None of the above

while (itr!'=en)
{
std: :cout << *itr <<std::endl;
++itr;

curr

C++ lterators

List the operators that the
iterator has to implement?
void print inorder (LinkedList<int>& 11) { *
LinkedList<int>::iterator itr = 1ll.begin();

LinkedList<int>::iterator en = ll.end()

e

1=
All of the above
None of the above

mooOw2>

while (itr!'=en)

{

std: :cout << *itr <<std::endl;
++itr;

curr

C++ lterators

void print inorder (LinkedList<int>& 11) {
LinkedList<int>::iterator itr = 1ll.begin();

LinkedList<int>::iterator en = 1ll.end(); .
QO How should the diagram change as a

o
while (itr!=en) result of the statement ++itr; ~

{
std: :cout << *itr <<std::endl;
++itr;

curr

C++ lterators

void print inorder (LinkedList<int>& 11) {
auto itr = 11.begin();

auto en = l1ll.end() ; .
() How should the diagram change as a

o
while (itr!=en) result of the statement ++itr; ~

{
std: :cout << *itr <<std::endl;
++itr;

curr

